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FINITE ELEMENTS, FINITE ROTATIONS AND
SMALL STRAINS OF FLEXIBLE SHELLS
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Abstract—The concept of finite elements for the analysis of shells is developed here with several important
advances.

Firstly, the Kirchhoff theory of shells is refined to include a transverse shear deformation. The refined theory
admits simpler approximating functions while preserving continuity at the inter-sections of elements.

Secondly, the motion of the element is decomposed into a rigid body motion followed by a deformation.
The decomposition serves to extend existing formulations for linearly elastic elements to problems involving
finite rotations and buckling.

Thirdly, the Lagrange equations are introduced to derive the equations of the discrete system. The method
yields the consistent inertial terms for any manner of motion, oscillatory or transient.

Finally, the simplest approximating polynomials are introduced in the context of the shear-deformation
theory. Further simplification is achieved by the introduction of constraints analogous to the Kirchhoff hypothesis
of the continuum theory. The constraints provide a rational basis for neglecting the contribution of transverse
shear in the strain energy. The resulting approximation converges rapidly to the Kirchhoff theory for examples
cited.

NOTATION

The usual suffix notations are used to indicate the components of tensors. Latin minuscules represent the
numbers 1, 2, and 3 while Greek minuscules represent 1 and 2 except in the Appendix where the special meaning
is stated. The summation convention applies to minuscules. Latin majuscules signify a particular particle of the
medium.

The arrow (—) over a symbol denotes a vector and a caret (") denotes a unit vector. The vertical line (])
signifies covariant differentiation with respect to the undeformed-surface coordinates. A comma (,) denotes
partial differentiation.

The initial and convected coordinate lines and tangent base vectors are shown in Fig. 3.

The symbol = is used to indicate an approximation of a previous equation.

Some basic notations follow:

& surface coordinate

6* . length along the normal to the undeformed reference surface

ajlA,) base vectors tangent to undeformed (deformed) surface—coordinate line 6%, c.i. equations

) (1a), (1b)

dx(A;) unit normal to the undeformed (deformed) reference surface > = 0

Gog(Aup) component of metric tensor of undeformed (deformed) reference surface; c.f. equations
(3,

alA) determinant |a,g)(| A,4l)

25(*Tlg) Christoffel symbols of the undeformed (deformed) surface coordinates; c.f. equations

4, 9)

Eap(*Eag) €5/ ale g,/ A) where e,5 denotes the permutation symbol

b.p(Byg) coefficients in the second fundamental form of the reference surface; c.f. equations (5),
(6),(8)

Gfor &) component of triad similar to d; but rotated; c.f. Fig. 3

oYap component of strain at the reference surface; c.f. equation (14)

Hug change-of-curvature of the reference surface; c.f. equation (15)

Ya transverse shear strain; c.f. equation (18)

Nag flexural strain-measure ; c.f. equation (20)

Iy relative displacement of reference surface ; c.f. equation (22)
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@ relative rotation of reference surface ; c.f. equation (29), (33)

Wiy components of relative rotation; c.f. equations (24), (26}, (29)

EM stiffness tensor : ref. [11]

Cobm surface-stiffness tensor; c.f. equations (37}, (38)

riort) tensor defining rotation of principal lines of strain (at reference surface); c.f. equations

(44), (46)

B small rotation of normal produced by transverse shear; c.f. equations (52), (53), (54), (57)
o tensor defining finite rotation of the reference surface; c.f. equation (55)

fo 3 component of tensor defining rotation of normal, c.f. equation (58)

¢ small relative rotation of normal; c.f. equation (59), (60)

P position vector of base point

PoP) position of generic point (on reference surface) relative to base point

Q angular velocity of convecting triad ¢;; c.f. equation (70)

T kinetic energy of finite element

U strain energy of finite element

v displacement vector

Sy incremental rotation of normal; c.f. equation (114c)

do incremental rotation of reference surface ; c.f. equations (114b, c)

qn generalized coordinate

DPn total generalized force upon element; py = ty+ fy

I generalized edge force at location N

ty generalized external force at location N

iy component of actual force at location N
m*N component of actual couple at location N

r{PQ) component rf; of tensor evaluated at point P but shifted to the base of point Q; see

Appendix
Ci(09Q) shifter ; c.f. equation (126)
Ina force at edge point N of element A

Notations not listed are defined in the text.

PART I: THEORY

Introduction

THE deformation of a continuous medium in the neighborhood of a particle is described
by a linear displacement field [1]. The description is accurate in a neighborhood of the
particle and approximate in a small finite region containing the particle. If a body is sub-
divided into small finite regions, then a continuous displacement field can be approximated
by a field which is piecewise linear in each coordinate, linear in each subregion. This notion
has been employed to approximate a continuous body by a discrete system. Numerous
references are given by Argyris [2]. The approximation within a finite region can be
accomplished by the energy method of Ritz. If the entire displacement field is continuous
across the interfaces of subregions, then it can approach an arbitrary continuous field
in the limit as the size of the subregions diminishes.

The motion of a continuous medium in the neighborhood of a particle can be decom-
posed into a rigid body motion followed by a deformation (or vice-versa) [3]. If finite-
elements are small enough to provide a valid approximation of the continuous body, then
the motion of each finite-element can be similarly decomposed. In particular, the motion
of a finite-element of a flexible shell can be conceived as a finite rigid motion followed by a
small relative motion. The latter motion is not involved with geometrical nonlinearities
and the former is not involved in the constitutive equations for the element. If the material
is Hookean, the constitutive equations are linear yet apply to circumstances with finite
rotations. Here, the decomposition is applied to shells and, more specifically, to finite-
elements with an important consequence: Any existing linear approximation for finite-
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elements can be employed to treat situations involving finite rotations. An example
demonstrates the applicability of the decomposition.

Finite-element sepresentations [4, 5, 6] of plates and shells have adhered to the Kirchhoff
hypothesis, assumning that a material line, initially normal to a reference surface, remains
normal during deformation. Continuity can be achieved at the interfaces of quadrilateral
elements if the displacement-field is approximated by a sixth-degree polynomial [6].
However, the simplicity of the piecewise linear representation is lost, the individual
element has 24 degrees-of-freedom and the derivation of the stiffness matrix is a formidable
task in itself. Alternative approaches are given by Clough and Tocher [4] and Fraeijs de
Veubke [5]. Both achieve continuity at interelement boundaries by procedures in which
the elements are subdivided and subsequently reassembled. The former [4] describes a
triangular (HCT) plate-element with 9 degrees-of-freedom for bending -(additional
coordinates are needed for stretching) and the latter [5] presents a quadrilateral plate-
element with 16 degrees-of-freedom for bending.

Much of the difficulty in the application of finite-clement formulations can be attributed
to insistence upon the Kirchhoff hypothesis. Accordingly, we present here a theory which
relaxes the Kirchhoff hypothesis and admits transverse shear strain. The theory permits
far simpler approximations of the displacement field including the piecewise linear
approximation.

The shear-deformation theory serves primarily to achieve continuity at inter-element
edges. Further simplifications result from constraints analogous to the Kirchhoff hypo-
thesis.

The simplest approximating polynomials enforce severe transverse shear strains which,
in turn, produce excessively stiff elements. This difficulty can be eliminated, after intro-
ducing Kirchhoff-type constraints, by suppressing the strain energy caused by transverse
shear. A numerical example demonstrates the merit of the resulting theory.

The presentation is divided in two parts: Part I contains the kinematical foundations,
specifically, the decomposition of rotation and strain, and the generalization of the
Kirchhoff theory. It is essentially a theory of shells, but a theory which is basic to our
treatment of finite rotations and our utilization of simple finite-element approximations.

FiG. 1
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Part 1I describes the application of the theory to an arbitrary shell and presents a few
illustrative examples.

The finite element
Let §* denote arbitrary coordinates of a reference surface & in Fig. 1 and 6 the distance
along the normal to % The undeformed shell is the region bounded by the surfaces
6* = +h/2 and an edge defined by a curve C on . and the normals to the surface along C.
A finite element of the undeformed shell is the region ¥V bounded by the surfaces
0° = +h/2 and edges formed along the nearby coordinate lines 8% = a% b* which enclose
the finite-element surface S.

Motion of an element
The motion of an element can be conceived as a rigid-body motion followed by a
deformation. The hexahedral element V of Fig. 2 is rigidly transported to V" and then

deformed to V*. A quadrilateral element S of the reference surface is rigidly transported
to $” and then deformed to $* as depicted in Fig. 3.




Finite elements, finite rotations and small strains of flexible shells 121

Kinematics of the surface element

Let o7 and ,R denote the position vector of a particle before and after deformation.
A tangent vector to the 8% coordinate line before deformation is

_ _of
Ay = é‘gg (la)
and the tangent vector to the deformed line is
. 3R
=1 1b
4: = o5 (1b)

The base vectors d; of Fig. 3 are tangent to the undeformed coordinate lines and the
vectors A are tangent to the deformed coordinate lines. A rigid motion carries the particle
P to P*, the surface S to $” and the triad @{P) to the similar triad ¢{P*). A subsequent
deformation carries §” to $* and deforms the triad ¢{P*) to ,Z{P*).

A fundamental theorem [7] asserts that the motion at a particle can be decomposed
into a translation, a rigid rotation of the principal lines {of strain) and a subsequent stretch-
ing of the principal lines. The rotation in question is then the rotation of principal lines. In
the analysis of a finite element of a shell it is more meaningful to employ a rotation which
rigidly transports the reference surface S to a position S” tangent to the deformed surface
S* at a reference particle P*. The rigid-body motion is completely defined and the orienta-
tion of the triad ¢,(P*) is fixed if we require that

Aa'gﬂ = é:ﬂ'Aa = ¢aﬂ (2a,b)
A,-23=0 (2¢)
at point P*. In the sense of small strains, the motion which carries §” to S* involves no
gross rotation. However, if the shell suffers transverse shear strain, then the motion involves
a rotation of principal lines. The computation of this rotation is described later.
The surface S$” and vectors ¢; differ from S and 4; by a rigid-body motion. The dif-
ferential geometry of §” and § is identical. It follows that a covariant component of the
metric tensor [8] is

CorCp =0, g = Gg. (3a,b)

The reciprocal vectors @’ and ¢ form similar triads but also differ by a rigid-body rota-
tion. It follows too that the Christoffel symbols of surface S and S” are identical :

My=a"-d,, = Cy {4a,b)
ete. A covariant component of the second fundamental tensor [8] is
by = 83-8yp=83:Cop (5a,b)
= —d, 835 = —T 23, (6a, b)
The first and second fundamental tensors of the deformed surface S* are similarly defined,

1.e.

— — N

Ay=A, Ay, By=A5Ad,,=—4,-4;, (7, (8a, b)

il
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etc. where A; # A, but denotes the unit normal to S*. We denote the Christoffel symbols
of the deformed surface by

*r‘;l; - Z‘l ‘ Zi.ﬂ' (9)

etc.

Kinematics of the element
The position vector of an arbitrary particle of the undeformed element is

F(0', 0%, 0°) = (0", 0%+ (a5, (10)
We now assume that the position of a particle of the deformed body is a linear function
of 03:
R(0, 02, 0%) = (R(0', 0%)+0%,G5(0", 0°). (11)
In words, the approximation (11) asserts thatﬁa material-line, initially normal to S, remains
straight. We next label the components of 4G, as follows:

oG3 = (1+6)A;+2°4,. (12)

From (11) and (12), it follows that
R, = [68+ 032y ], ~ BE— cBY)] A, + 0° 2B, + £.)A, (13a)
R, = G, (13b)

* « . . . . . .
where (|) signifies covariant differentiation with respect to the deformed surface.
We define two tensors which characterize the deformation of the surface at a point:

Q‘yaﬂ = %(Aaﬂ_aaﬂ) (14)
xuﬁ = %(Baﬂ—baﬂ)‘ (15)

Throughout the subsequent development the variables y,, ¢7.5 and x,; are supposedly
small, i.e. the corresponding physical components are small compared to unity.
For brevity, let

?’i = gi’ R,,- = Gi~ (163, b)
The components of Green’s [9] strain tensor are determined from (13) with the nota-

tions of (7), (8), (14), (15) and (16). Neglecting products of small quantities y,, g7.5, %4,
we obtain

Y33 =%(63'63—1)ﬁ (17a, b)
. = 03

V32 = 363 Go = Yat 56, (18a, b)

Vap = HGa: Gg—Ba- Bp) = qVap+ 0Ny (19a,b)

wherein

Nag = Valp+ Vgla— "ap- (20)
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Here we have replaced the covariant differentiation (|*) with respect to the deformed
surface by differentiation with respect to the undeformed surface (]), assuming that deriva-
tives of the strain components are also small. In addition, if the transverse strain ¢ varies
gradually we can neglect the underlined term of (18b). This term is neglected in the sequel.

The deformation at a particle of the shell is characterized by nine variables: ¢, y,,
0Vap» and ,5. Our theory gives the strain distribution:

Y3z = ¢, V3a = Ya (213, b)
Yap = 0¥ap+ 0 Mup. (21c)

Strain and relative displacement of an element
Let w(6', 0%) denote the small relative displacement which carries S” of Fig. 3 to S*.

W= wid, +w’e, (22)
w,=A4,-7, (23a)
= (W, — w?bA)T, + (Wi + wb )85, (23b)

The normal component is:
W3, = &3 Wy = Wl +whh,,. {(24a,b)

The symmetric and skew-symmetric parts of the tangential components are:

Pap = 3T, Wyp+Cp - W, (25a)
= 3 (Wol g+ wyl,—2w3b,p) (25b)
Wop = 3(C, - Wy — Ty W) (26a)
= HWalp—wglo)- (26b)
From (23), (24), (25), and (26) it follows that
A, = Ot (Ppat 0 )P + 03,85, (27)

Since the motion from S” to S* is characterized by small strain and small relative rota-
tions, the surface tensors ¢4, w,; and w;, can be identified with the surface strain and
rotation as follows:

0Vap = Dup (28)
@ = o'f {292a)
= 8“((93;:52‘*’%{0;1163) (29b)

wherein ¢* is a surface tensor related to the permutation symbol ¢ via
e = e/ Jja (30)
Ja =85 -(d, xa,). (31

If the reference triad ¢, is chosen in accordance with (2), then according to (23), (24), (26),
and (29) o' = 0, w;, = 0 at the reference point P*.
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With the definition (29), equation (27) has the alternative form:
A, = E,+ ¢l +B X, (32)

We note that (32) is exact, but that the tensor ¢,; and vector w; can be identified with the
surface strain and rotation only if the latter are small throughout the region in question.
In the notation of (24), (26), and (29) the normal to the deformed surface is given by
Ay =2, +@x 8, (33a)

3 —(85 - W) (33b)

fptd

From {12), (28), (32), (33) and the approximations of small strain and small relative rota-
tion, it follows that

A, = oG, = Gyt oVhls + @B % C, (34a)
Gy = oG5 = 9%, +(1 + )3+ B x &5 (34b)

In accordance with (5), (8), (15), (23), (33), (24), (25), and (26),
Hog = W3glp+ (Dot @005 (35a)

Finally, we note that the term ¢,,b} can be neglected [10] and that the change-of-curva-
ture tensor must be symmetric. Consequently, equation (35a) can be replaced by

Kag = %(wufﬂ + @3pla+ 0y + 0,5b5). (35b)

Strain energy of an element

Assuming that the transverse normal stress is negligible and that the material is linearly
elastic and elastically symmetric with respect to the middle surface, we take the strain
energy in the form [11]:

D = 3CMy 7+ 2E* Y0375 (36)
where
E33aﬁE33yq
o — pabvi_ FT 37

and E'* are the elastic coefficients of the three-dimensional isotropic or aelotropic body.
For the thin shell, it is consistent to evaluate the components E¥¥ at the middle sur-
face, i.e.

Eik - EUR(gl 62 () = E'M (38a,b)
¥ = gt 62,0) = C*¥m, (38¢, d)

Substituting (21b, ¢} and (38) into (36) and integrating through the thickness, we obtain

hi2 g
6= f o \/gd()?’ (39a)
—hi2

h n? L
N Ecapm((_)'))aﬂ Q'))y"‘i"’l—zr]apny,,) +2hE 3”3})“)),,. (39b)
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The strain energy of a finite element is obtained by integrating (39) over the finite
surface S which defines the element:

= f f /ad6* do>. (40)

Finite rotation and small relative rotations

The Appendix contains an analysis which decomposes the motion of a neighborhood
into a finite rotation followed by a deformation. The rotation of the principal lines of
strain is represented by the tensor r; of (82) and the deformation by the tensor (,GJ) of
(83). In the case of small strain, the rotation tensor is expressed by the approximation (85),
the deformation by the approximation of (84) and the motion which successively rotates
and deforms the base triad g; to g; to d- is given by (82) and (86).

Let us examine the motion at the reference surface S, where we set

g’i(ala 623 O) = [ii? g‘:(el’ 923 ) = é” (41)3 (42)
G0, 6%,0) = G, (43)
rEJ{QI, 02,0) = Qr‘.} (44)

Y30',0%,0) = ov5,  30L,0%0)=¢  26%,0%0) =y, (45a,b,¢c)

In these notations, equation (82) defines a rigid rotation at the reference surface §; specifi-
cally,

= '—.

d; = orid;. (46)
With small strain, the tensor o} is given by (85); in particular
ota = @ (05~ gh)oGp—7x oG] (@7)
According to (86) a tangent to the deformed surface S* is
oG = (8 + g¥2)dj + .ty (48)

and the tangent to the deformed @ line is

oG3 = (1+¢e)d; +yd;. (49)

Upon examining (47), we note that the rotation tensor depends on the transverse shear
strain y, and, upon examining (48), we observe that the rotated vector &, is not tangent to
the deformed surface S*.

In the analysis of shells, it is appropriate to deal with the motion of a reference surface.
The rotation of the reference surface does not involve the transverse shear strain. Accord-
ingly, we conceive a decomposition in which the base triad 4; at point P is, first, rigidly
transported and rotated to a similar triad &/ at point P* such that the vector ¢, is tangent
to the deformed surface S*. Then the triad & complies with Equations (2a) and (2c) which

imply that the relative rotation @ of (34) vanishes. Consequently, the latter equations
reduce to

pN|

= oG, = G5+ 7D (50)

Gy = Gs = 2y, +(1+6)e;. (51)
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By comparing (48) and (49) with (50) and (51), we conclude that the triads d@; and ¢; differ
by a small rotation ; specifically,

¢ =d +fxa; (52)
wherein
B = e%yp,d, = &%, (53a,b)
The inverse of (52) is
a =3¢ —fxéi. (54)

The relative orientation of @/ and ¢/ is shown at the point P* of Fig. 4.

FiG. 4

The rigid motion which carried d; to ¢; is expressed by an orthogonal transformation :
¢l = oFid;. (55)
By inserting (46) in the right side of (52) and equating (52) with (55) we obtain
ok = oM+ 7:07 orly =778} o1, (56a)
Conversely,
(_,rj, = Qf’,—yléf’ (_)FJ3 +’))1(513 (_)Fja (56b)

We observe that the motion which carries 4, to & differs with that which carries 4,
to G,. The deformed normal 63 results from an additional rotation (—2f) caused by
transverse shear and an extensional strain (¢). In accordance with (51) the unit vector G,
tangent to the deformed 6° line is

Gy =&, —26x¢;. (57)
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The transformation which carries the initial vector d, to the vector G, is obtained via
(57) and (55) as follows:

Gy = (oF3 +2y" §7)d; (58a)
ofsd;. (58b)

For our purposes, we may conceive the motion of a neighborhood V of P decomposed
into a rigid-body motion which carries V to V" and a deformation which deforms V" to
V*. The rigid motion transports the particle at P to its terminal position P* and the
reference surface S to S” tangent to the deformed surface S*. The differential geometry at
a generic point Q” of S” and V" is identical to that at the same particle at Q of S and V. The
base vector &;, tangent to the displaced ' coordinate-line, is similar to @; but rotated so
that

(:i(P*) = Z‘.EI(P*)'
The surfaces S, S”, and S* and vectors d;, ¢;, ¢; are depicted in Fig. 4.

From the latter viewpoint, the deformation which deforms V" to V* and S” to S* is
characterized by small relative rotations. Consequently, the deformation rotates and
deforms the triad ¢, to (_,Gi in accordance with (34a) and (34b); the latter can be rewritten
in the form:

Gy = G3 = (1+8)83+dx &, (59)
where ¢ is the rotation which carries &, to G5
¢ﬂ = Saﬂ(z’))a+wa3)’ 2ya = Eaﬂ¢ﬂ_wa3' (603, b)

Equating the right side of (50) with (34a) and (51) with (59), and invoking the small-
strain approximation, we obtain

¢/ =C+dx7 {61a)
= (8]+ w))e;. (61b)

By equating (55) and (61) we obtain
o = @207 + 0f). (62)

Now the vector ¢, is a base vector at a generic point Q" of §”, obtained by a rotation of g,
at the corresponding point Q of S. However, the rotation is that of the reference point P.
To effect the rotation, the tensor ¢; (P) must be shifted to the base of Q as described in
the Appendix. The shifted component is [see (108)]

o H(PQ) = [@!(P)- a(Q)1[a,(P)- @(Q)]gi- (63)
With this notation, (62) takes the form
o Q) = o (PQ)[8F + wH(Q)]. (64)

Equations (62) and (64) are particularly significant in analyses of finite rotations by the
method of finite elements, for they express the rotation at a point Q near P in terms of the
rotation at P and the small relative rotation é.
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The rotation of the hormal is given by the tensor ¢! -3 of (58). The rotation of G, relative
to the local base ¢ of the reference surface S” is @—2f. Accordingly, the counterpart of
(64) is

073(Q) = o7 (PQ)[88 + wy(Q)+2057Q)]. (63)

The tensor !, must be continuous; in particular, it must be continuous along interelement
boundaries.
If the transverse shear strains vanish, i.e. y, = O, then

Vg
and

Velocity and kinetic energy
In our analysis of the motion of a finite element we require an expression for the
velocity of an arbitrary particle at Q*. To this end, let P denote the position vector of the
particle at P* and P the position vector of Q* relative to P*. The velocity of the particle at
Q* is
V=P+p. (68)

The vector P is the velocity of the particle at P*. The velocity p can be decomposed into
the contribution from the rigid-body motion and the deformation.
If Q@ denotes the angular velocity of triad ¢;, then

B = Qxptit03exis+its) (69)

wherein W, q§ and ¢ are the relative displacement of (22), the relative rotation of (59) and
the extensional strain of L21a). _
The angular velocity £ is expressed in terms of the rotation tensor (; of (63) as follows::

¢, =Qxe (70a)
= Hd;. (70b)
Therefore,

Jhi=d - (Qxe) (71a)
= %a’ - (R xd,) (71b)
= oFHQa™ 4Epm- (71c)

Conversely,
2Q, = o o gfujp- (71d)

All components are referred to the initial base-system 4;.
If the rotations are moderate, then in the manner of (88):

QFﬂ = aj,-+0k (_)skij (723.)
o = 0" oty (720)
Q=0 (72¢)
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The kinetic energy of the finite element is the integral

T:%fffvp?f/’dv 3

where p denotes the mass density of the undeformed medium.
If the shell is thin, the volume element is approximately

dv = ,/ad6' d6* d6*. (74)

To further simplify (73), we neglect the extension rate & in (69), assume that p = p(#*, 0?)
and set

P = (BB, 0%)+0%¢,. (75)
With the approximations (74) and (75), (73) assumes the form

T——-[%?‘?+h(f”xﬁ)~ff obp dS
S

hif = ~
+§ffggxgﬁ)-(gxgp*)pds]

+[hﬁ-ffv’if"pdS-i—hﬁ.foﬁxw"pdSwth.J‘W-WpdS] (76)
s 27 Us

h? o
+§5[f L € x&3) Q2 xey)pdS

+2jfs(ﬁxes)~<$xeg)pd3+“(q’s’xesr(zﬁxéswdﬂ.

The terms of (76) are grouped into three bracketed groups. The first group is indispensable ;
its terms depend only on the rigid-body motion of the element. The last group represents
so-called rotary inertia; these terms are usually negligible in thin shells. The middle group
depends on the small relative displacement W which is determined by a priori approxima-
tion of deformation within the element. Notice, too, that the first group of (76) must pre-
dominate as the size of the element diminishes. We conjecture that the first bracketed term
of (76) is enough for the analyses of most thin shelis.

APPENDIX TO PART I

The decomposition of motion into finite rotation and strain

A particle P has initial and terminal positions defined by the vectors 7 and R. Particles
of the medium in a neighborhood of P are located by curvilinear coordinates &, The same,
but convected, coordinates are employed for the displaced particles. The tangent base
vectors for initial and terminal lines are denoted by g; and @,-, respectively; the reciprocal
base vectors are denoted by g’ and G', respectively.

We require a transformation of g; into G, via the successive steps:

(1} a rigid motion which transports g; to a similar triad g; followed by

(2) a deformation which carries g, to the terminal triad G;.
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The required decomposition was described by Toupint. The treatise by Truesdell and
Toupin [12] gives a full account of the ““fundamental theorem™ and its origins. The presenta-
tion in these works is completely general, employing both Eulerian and Lagrangian view-
points and using “two independently selected general curvilinear co-ordinate systems”
[12]. Here we are concerned with the motion of a solid and, specifically, an elastic solid.
Consequently, we are compelled to use initial coordinates and adopt the Lagrangian view-
point. Since the Eulerian viewpoint is inappropriate, we can dispense with the dual system
of coordinates and use the appropriate simplification which we present below.

Strain tensor

Let ds and dS denote the differential lengths of a material line before and after deforma-
tion, let g;; and G;; denote covariant components of the metric tensors of the undeformed
and deformed systems, and let y;; denote the strain tensor. The lengths, metric tensors and

strain tensor are related as follows:
dS$?—ds? = (G;;—g;;) 40" d¢/ = 2y,; dO do. {77a, b)
Let the triads A, = n,g; and N, = N,G, (x = 1,2, 3) define the principal directions of
strain in the undeformed and deformed body, respectively, and let ¢, and E, denote the

principal values with respect to the initial and terminal systems, respectively, The compo-
nents of the unit vectors are related as follows:

nt = (1+2e,)INL, Ni = (1=2E)*nt.
A strain component is expressed in terms of the principal values by the following:

Tfj = Z eanzinzj
2

=Y E.N,N,;.

Rotation tensor
The motion which carries the orthonormal triad #, to the orthonormal triad N, is a
rigid motion characterized by an orthogonal transformation which expresses the compo-
nents of N, in terms of the components of #,.
Let R!; be a two-system tensor which defines the rigid rotation as follows:
Ni= Rin]. (78a)

Itis a two-system tensor because the first suffix signifies its tensor character in the deformed
system (G;;) while the second signifies its tensor character in the initial system (g;;). The
inverse of (78a) is

n', = R/Ni. (78b)

In this instance, it is more meaningful to stay in the initial reference system. Accord-
ingly, the components of N, are expressed in terms of the initial base vectors g;:

Na = (rfjn;)g’i {(79)

tR. A. Toupin, op. cit.
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where ri; is a tensor with respect to the initial system and related to RY; as follows:

-

ri=(g-G,R% (80a)
Rl = (G- g)rh. (80b)
Motion of the base triad
The base triad G; of the deformed coordinates is given by

G, = (3 (142, ) (8, 81)

Clearly, the second parenthetical factor represents a rigid rotation of the base triad g, to
g =g, (82)

while the first parenthetical expression represents a deformation which carries the triad
g to G;. Let us define

sGI =Y (1+2e,) nyn]. (83)

a

Note that this tensor has the principal directions of y;;, but different principal values.

Approximation of small strain
If the principal extensions are small compared to unity, i.e. ¢, < 1, then

3Gy = Z (1+e)n,ing; = gij+vij- (84)

o

A corresponding approximation of (83) leads to the following approximations
= 27 Gi3j—g" ) (85)
G; = (8+7))g;" (86)

Approximation of small strain and moderate rotation

The approximation (86) is limited to small strains, but applies to unrestricted rotations.
In most structural problems, the rotations are not unrestricted but small or, at most,
moderately large. We regard a rotation as “‘moderate” if it is small enough to be treated
as a vector with adequate accuracy ; a rotation with the order-of-magnitude 14, is moderate.
By the foregoing definition of “‘moderate,” the rotated base vector g; is given by

g =g+0xg. (87)
It follows from (82) and (87) that the rotation tensor has the form:
Fpi = 8pit ey = 8pi+ 0,50 (882, b)
The strain components are now small; the order-of-magnitude of a physical component
is 165 or less. The rotation components are moderate; the order-of-magnitude of a

physical component of the rotation vector is £ or less.
In accordance with (88), equation (86) assumes the form

Gi = gi+y{gj+ gjigj"“?'inmmgj- (89)
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In view of the symmetry of g;; and y,;, and the skewsymmetry of 0,;:

€ = %(g. : 6j+gj' Gi)—gij = "/ij+%(’/3'"9im+)'7'0jm) (90)
Q; = 3 Gj_gj : Gi) = 0ij+%(7’7'9im—7’7'0jm)- (91)
From (90) and (91) we conclude that first approximations are
Yij = € = %(gi'aﬂ’gj‘ Gi)_gij (92)
0 = Q= 3&:- Gj“gj'éi)- (93)

The approximation (92) neglects terms of order 6 compared with unity, while (93) neglects
terms of order y compared with unity. The latter is adequate, while the former is a poor
approximation for moderate rotations. To obtain a better approximation, we return to
the definition (77b), and obtain

yij = eij+%gpq(()pi+Qpi)(eqj+qu)' (94)

We recall that Q;; of (93) provides a good approximation for moderate rotations while
e;; has the order-of-magnitude of a strain component. Accordingly, we neglect the products
in (94) containing e;;. The resulting approximation for moderate rotations is

Tij = e+ 387,80, {93)

Approximation of small strain and small rotation

If the strains and rotations are small, say 145 or less, then the first approximations (92)
and (93) hold. It follows that

—

G, = g+ (y;+0;)8 (96)
In accordance with (87) and (96),
6i=5i+§Xgi+V{gJ- 97

Here, the vector G, is the sum of three terms: the original tangent vector (g;), the contribu-
tion from rigid rotation (8 x g;) and the contribution from deformation (/g)).

Relation between finite rotation and small relative rotation

At each point of the deformed medium we conceive a triad g; obtained by rigidly
transporting the triad g; according to (82). In the event of small strain, the tangent vector
of a deformed coordinate line is given by (86).

We may take an alternative viewpoint and conceive a neighborhood V of a point P
rigidly transported to V" with the particle at P moving to its terminal position at P* and
the triad g; at P rigidly transported to g; at P*. Moreover, the differential geometry of the
neighborhood is unchanged by the rigid motion; at each point of V" we conceive a triad
of tangent vectors g; at each particle of the displaced neighborhood, similar to the initial
triad g; at the same particle, but rotated such that

gi(P*) = gi(P*). (98)

The motion which deforms the neighborhood V” is characterized by small relative

rotations. The tangent vector G, is expressed in terms of the rotated vectors g in the man-

1

ner of (97), but § now denotes only the additional rotation of g which is caused by the
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deformation:
G, = 3]+ +0xg; (99a)
= (8] +yi+69)g;. (99b)

Note that the latter viewpoint incorporates the approximations of small strain and small
relative rotations. This means that the accuracy diminishes as the neighborhood increases.
Inverting (86), we obtain the approximation:

Substituting (99) into (100) and, again, neglecting products of the strain and relative
rotation components, we have

g; —g;’+9><*" (101)
In accordance with (82) and (101)
rf,=gr- (*”+9><g ). (102)

Equation (102) has special significance in the analyses of large deflections by means of
small finite elements. Suppose, for example, that the rigid rotation is known at a point P
and the small relative dlsp]acements are known in a small region about P. Then, g7 is
determined by the former, @ by the latter and the rotation tensor r?;is computed for a neigh-

boring point by (102).

Shifting

Equations (101) and (102) apply at any point Q in a small enough neighborhood of P.
Moreover, the base vector g is evaluated at the point Q, but it is obtained by rotating the
base triad g; of Q by the amount of the rotation at P. However, the rotation tensor r! ;of P

is referred to the triad at P. That is,

gi(P) = ri{P)g,(P). (103)
The base vector g7(Q) at Q is expressed in terms of g/(P) as follows:

g:(Q) = [8"(P)- &i(Q)gnP (104)
Substituting (103) into (104), we have

gi(Q) = [g"(P)- Z(Q)Ir(P)E/P). (105)
In the manner of (104),

= [8(Q)- 2{P)]E(Q). (106)

Substituting (106) into (105), we obtain

gi(Q) = [g(P)- 8/(Q))[8(Q) E(P)Ir(P)ZLQ). (107)

g

Recall, however, that the vector g; is merely a rotated version of g;. Consequently, the primes
in the first bracket of (107) can be suppressed; then

gi(Q) = [2"(P)- 8(Q))[8%(Q) - /P (P1B(Q) (108a)
= ri{(PQ)ELQ). (108b)
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The bracketed quantities of (108a) are termed “shifters” and serve to shift the tensor of P
to the base system of Q. For brevity, we denote the shifted component by r¥;(PQ) as defined
by (108b).

PART II: APPLICATION

Syropsis of Part 1

The motion of a finite element of a shell is decomposed into a rigid-body displacement
followed by a small deformation; the deformation is characterized by small relative dis-
placements. Small relative rotations are related to differences of finite rotations.

A theory for small strain of a shell-element is based upon the hypothesis that a normal
remains straight, but not necessarily normal.

The decomposition serves to adapt linear finite-element approximations to nonlinear
problems of large rotation. The generalization of the Kirchhoff theory admits simpler
approximations of the displacement within an element.

Approximating the deformation of the element

The displacement of the surface % is to be approximated piecewise by approximation
of each element. The pieces must provide a continuous displacement of .#. In addition,
the edges of adjacent elements must be contiguous.

The deformation of the element V' is defined by the relative displacement of the reference
surface § and the relative rotation and extension of the normal. In keeping with the plane-
stress assumption of (36), (37), and {40), we impose no approximation of the transverse
extensional strain ¢ Then, the deformation is fully characterized by the three components
of W in (22) and the two tangential components of the rotation & = (@—2f) in (60). The
former define the deformation of the reference surface S and the latter define warping of
the edges of V.

To be specific, let the base point P have coordinates 8 = a* and, to simplify matters;
let

N = (07— a/L (109)
where L* is so chosen that the corners of S are at (x!, x%) = (0, 0), (0, 1), (1, 1), (1, 0).

The simplest polynomial approximations which preserve continuity are based upon the
Lagrangian interpolation between inter-element boundaries:

Wy = Bugx? + Cox'x?, (B,; = By, (110a)
wy = C3x'x? (110b)
$a = W= 27, (111a)

= D,+ Exf + F,x'x? (111b)

Here the forms of (110) are simplified because the relative displacement W and rotation @
vanish at the base point (x* = 0). The surface S* defined by (110) has six degrees-of-flexibility.
In addition, the rigid-body motion provides six more degrees-of-freedom. Together, the
twelve parameters are determined by the displacements of the four corners of the element.
Likewise, the eight parameters of (111) are determined by the rotations at the four corners.
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The linearity along the edges and coincidence at corners insures the continuity of the
surface &* and the contiguity of interelement edges. In principle, the approximations (110)
and (111) are comparable to Melosh’s “flat triangular” approximation [13].

If the Kirchhoff hypothesis is invoked (y, = 0 and ¢, = w,), then the foregoing ap-
proximation (110, 111) is unacceptable because adjacent edges are discontiguous. The
requisite contiguity is achieved only if the surface has a continuous normal. A Hermitian
interpolation [6] of the transverse displacement wj, is required in S. Then, the component w;
is approximated by a sixth-degree polynomial and the quadrilateral element has at least
24 degrees-of-freedom.

The approximation (110) describes extensional deformations as well as most, and,
together with (111), admits transverse-shear deformations. In addition, the approximation
(110b) is far simpler than the Hermitian interpolation. On the other hand, the approxima-
tion (110b) has an inherent disadvantage: It provides no curvature-change within the
finite element. This means that two elements are needed for the crudest approximation of
flexure. Consequently, more elements may be needed wherever flexure predominates as, for
example, in a plate, near the edge of a shell or near a region of concentrated loads. Accord-
ingly, we present an alternative which provides changes-of-curvature yet retains some of the
simplicity achieved by relaxing the Kirchhoff hypothesis:

As an alternative to (110b) we may take

wy = C3x'x?+3D3,(x")* +3D;,(x?)?
+2E31(x')?x? +3E;55(x?) x! (112)

The function (112) is quadratic along an inter-element boundary. The quadratic is deter-
mined by the values at the end points and another value, say, the value at the mid-point.
The four additional parameters of (112) provide just the required flexibility to maintain
continuity at interelement boundaries. The approximation (112) for w; and (110a) for
w,, together with (111) provides 18 degrees of flexibility just as the approximation [6]
which provides a smooth surface &*. However, the present approximation utilizes only
cubic terms and, therefore, provides the simpler basis for deriving stiffness matrices.
Moreover, our approximation admits transverse shear deformation which can be significant,
particularly, when the shell is nonhomogeneous as a sandwich.

It is interesting to note that a couple and force on each edge of the quadrilateral element
form a collection of 24 components on the four edges. This is the number of generalized
forces obtained from the approximation of (110a), (111), and (112) or the Hermitian ap-
proximation [6] with the Kirchhoff theory.

Kirchhoff-type constraints

According to (111) a material normal rotates independently of the motion of the
reference surface S. In particular, each corner of a finite element can rotate independently
of the other corners. This freedom is more than needed to insure the contiguity of the edges
of adjacent elements. It is the freedom of transverse shear and it can be eliminated by a
constraint analogous to the Kirchhoff hypothesis: For example, we may require that the
transverse shear y, vanish at the mid-point of the 8* edge. By imposing the condition at the
mid-point of each side, we reduce the degrees-of-flexibility by four. In the limit, as the
element becomes infinitesimal, our approximation must then approach the Kirchhoff
theory. The four constraints constitute the discrete counterpart of the Kirchhoff hypothesis.
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Generalized coordinates—local and global

The motion of the finite element is decomposed into a rigid-body motion and a relative
motion. The former is defined by the velocity P of the base particle P and the angular velo-
city Q associated with point P. The rigid motion is determined by the three components of
P and three variables (e.g. angles of rotation) which determine Q; these six time-dependent
quantities are here called the generalized global coordinates.

The relative motion of any particle of the element is defined by the relative velocity W,
the relative angular velocity $ and the extensional rate & The last is to be ignored in favor
of the plane-stress assumption. The relative velocities w and ¢ are determined by the
approximation for W and ¢ which serve to express these functions in terms of discrete
time-dependent quantities. These quantities are here called the generalized deformation
coordinates and their time derivatives are called the generalized deformation rates. The
number of such deformation coordinates determines the degree-of-flexibility.

Let gy denote a generalized coordinate. If there are ‘n’ generalized deformation co-
ordinates, then N = 1, - —, n signifies a deformation coordinate. The coeflicients in (110)
and (111) are examples of possible deformation coordinates. The global coordinates are
signified by N = n+1,- -, n+6.

Any infinitesimal movement of the system is defined by ‘n+6’ virtual ‘displacements’
dqn- The work of external forces upon the system takes the form:

n+6

dw= 3 pniqy (113)
N=1

The variable py is the generalized force associated with the coordinate gy . The generalized
forces are comprised of forces ty exerted by external agencies and forces fy exerted by
adjacent elements via contiguous edges. Such generalized forces need not be physical forces
or couples.

To achieve continuity of the displacements and reactions along inter-element bounda-
ries, we express the incremental displacements dgy and forces fy in terms of identifiable
displacements and actions at the edges: Our choice of displacements depends upon the
approximations of w; and ¢,. If a polynomial approximation of the transverse displacement
w, contains ‘k’ parameters, we require k + 3 edge values; three additional values account for
the rigid-body motion. Likewise, if polynomial approximations of w, contain ‘I’ parameters,
then we require ‘/+ 3" edge values. If we restrict our attention to the approximation (111) for
¢, then the 8 components of the corner-rotations are suitable alternatives to the coefficients
in (111). Note that the total of generalized coordinates is

n+6=(k+3)+(+3)+8
and the number of deformation coordinates is
n=k+I1+8

The equations which express the generalized coordinates in terms of identifiable edge
displacements are obtained as follows:

Let x* = p*locate a particle ,Q* at the edge of S* and let 4P be the vector P*Q* Then a
virtual displacement of the particle ,Q* is

— — — -—
SV(p', p*) = 8V(0,0)+ dax P+ dw(p', p*)
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where gis the rigid-body rotation of the element. At each of ‘k + 3’ points along the edge
of §*,

—_ — — —
Vg = 836V = 2,.[0V(0,0)+daxof+6wx] K =1,....k+3  (ll4a)

wherein the subscript ‘K’ signifies a certain point of the edge. At each of ‘(I+ 3)/2’ points
along the edge of S*,

—_— — — —

oV, =¢,.0V, =¢,.[0V(0,0)+ daxoP + ow, ] L=1,...,(1+3)2 (114b)
In addition to (114a, b), there are 8§ _q’quations which assert that_th’e rotation of a corner is
the sum of the rigid-body rotation do and the relative rotation d¢:

Syt = €1 Oy = G [0a+0Gy] M =1,2,3,4 (114c)

The total number of (114a, b, ¢) is ‘n+6°, the number of generalized coordinates. The left
sides of (114a, b) and (114c) are components of displacement at edge-points of S* and of
rotations at the corners of V'*. The right sides are linear combinations of the generalized
displacements dqy, i.e.

n+6

5V3K: z AKNéqN (114d)
N=1
n+6

oV = Z Byin 0qn (114e)
N=1
n+6

oy = Z Camn 09 (1141
N=1

Note: Not all generalized coordinates appear on the right sides of (114); those defining
relative edge rotations do not enter 6V; nor 4V, and those defining relative displacements
do not enter Sy,

The inverse of (114) expresses the generalized displacements as linear combinations of
the edge displacements and rotations, viz.

k3 a+3yz _ 4

oqn = ), AngVax+ ) B oVt Y, Cia Wan, (115)
K=1 L=1 M= 1

N=1,...,n+6

If the rigid rotation of the element is moderate, then (114) and (115) serve as well to relate
coordinates as virtual displacements.

In the event of small rotations, edge displacements Vi, V., and rotations /., may
prove to be the most convenient generalized coordinates. Then, we need only express the
approximations w;, ¢, in terms of the edge displacements and rotations and identify each
of the latter with a label gy(N = 1,——, n+6).

Generalized edge reactions

Let /'3 denote force components acting at the ‘k+ 3’ edge locations of virtual displace-
ment 8V, let f¢ denote the force components at the ‘(I + 3)/2° locations of virtual displace-
ment 3V,; and let m3,; denote couple components at the corners of the element. The virtual
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work of these forces is

k+3 {(d+3y2 4
ow = Z fROVag+ Z JEoVu+ Z My Oy {116a)
K=t L=1 M=1
nt6
= 3 fvoqn (116b)
N=1

Equations (114) may be used to express Vi, 6V, and d¢,,, on the left side in terms of

Jqn. or {115y may be used to express the dgy on the right in terms of 3V, 6V,, and dyr,,.

In the first case, since the dqy are independent, equation (116} provides ‘n-+6’ equations:
k+3 {i+3)2 4

In= Z Agn SR+ Z Baun/i+ Z Camnmy (117)
K=1 L=1 M=1

If (116b) is expressed in terms of 6V;x, 8V, and Sy, by means of (115), then, since these
displacements are independent, equation (116} provides ‘n-+ 6" equations:

n+6

fi= 3% Anlv (118a)
N=1
n+6 -

fi= Y Bify (118b)
N=1
n+o6 -

my = 3 Cimly (118c)
N=1

Of course, (118) is the inverse of (117).

Generalized external loads

Let point Q* mark a particle on the upper (or lower) surface of V*, let p denote the
vector P*Q*, let I denote the traction exerted on the surface and let 8V denote a virtual
displacement at Q*. Then the virtual work of the applied traction is

Sw=7.0F

il

. — - = h
r. [5V(0,0)+5:1/xp‘+bw+5¢ xé3§]

For simplicity, we suppose that the traction is referred to the initial area S. Then the
virtual work of all tractions upon the surface is

5w==?3—I7(O,0)-in’dS+ ff?-}%"ds
S S
+3J5-ffp’x7ds+ge3-fffx 3¢ds
Ly N

With the selection of global coordinates, the rigid-body displacements 5"17(0, 0) and W
can be expressed in terms of generalized displacements dgy(N = n+1,~—,n+6). The
relative displacements dw and 33 are expressed in terms of generalized displacements
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dgx(N = 1,——, n) by the approximations. Then equation (119a) assumes the form

n+6

N=1

wherein the coefficients ty are certain weighted integrals of . We call the coefficients ty
the generalized external loads.

Again, certain edge displacements and rotations can serve as generalized coordinates,
particularly when rotations are small. Then the generalized external loads can be identified
with actions at prescribed points of the edge.

Approximate equations of motion for the finite element

With our choice of global coordinates to define rigid-body motion and with our ap-
proximation of the functions w; and ¢, the velocities P, Q, W and ¢ can be expressed in
terms of the generalized velocities gy and coordinates gy . Then, by means of (76) the kinetic
energy can be expressed in terms of the generalized variables:

T = T(gn,qn) (120)

Only three coordinates gy, the global coordinates defining the rigid-body rotation, appear
in the kinetic energy in addition to the derivatives gy.

Equations (25) and (28) express the surface strain gy,; in terms of the relative displace-
ment w. Equations (24) and (60) serve to express the transverse shear strain y, in terms of the
relative displacement w and rotation ¢. Then, with the aid of (24), (26), (35b) and (20), the
variable #,; can be expressed in terms of the variable w and ¢. Summarizing these kine-
matical relations, we have

0Yag = Hw Wolg+wWglo —2w? b.s) (121a)
?a % rzﬂ¢ +W3 zz+w bAa) (lzlb)
Nap = Velg+Vgla—%ap (121¢)
1 . .
Hop = 7[W |rz +w I a+(WAbia)| +(WAb;t )'a
1] 13 B 3B B B (121d)
+7(Wa| - ‘u)bﬂ (WBI ylﬂ)b{:]

It follows that the strain-energy density (39) can be expressed in terms of the variables W and
@ and, after the approx1mat10n of the functions W and ¢, the strain-energy integral (40) can
be expressed in terms of ‘n’ generalized deformation coordinates

U = Ulgw)

The generalized loads ty are obtained via (119).
Finally, the equations of motion for the finite-element are the Lagrange equations [14]:

d|oT oT oU
—|=—=—]——=—+——tx—fn =0 122
dt(an) oqn  Oqy I (122)

N=1,...,n...,n+6
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Equations (122) relate the generalized coordinates gy and edge reactions fy. Since the
coordinates ¢q,+; ———¢,+¢ define the rigid-body motion, we anticipate that the corres-
ponding equations (N = n+1,-—,n+6) govern the gross motion. Conversely, since the
coordinates g,— —q,, define the deformation, we anticipate that the corresponding equations
(N = 1,-—, n) are constitutive relations.

In the intrinsic theory of shells the governing equations reveal no measure of any finite
rotation. This happy circumstance occurs because the equations are referred to the current
directions of the convecting lines. Analogous results are achieved in equations (122) if the
Lagrange equations are formulated with global coordinates (N = n+1,-—,n+6) and
velocities referred to the convected triad &;. In particular, the global orientation can be
defined by rotations about the directions of the base vectors ¢;.

For each element of the shell there are ‘n+ 6" equations (122) which contain 2(n+6)’
variables gy(t) and fy(¢). The additional equations are obtained by equating the displace-
ments and/or rotations of certain coincident particles or lines of continuous edges and by
requiring that the sum of all actions and reactions on such particles and/or lines vanish:

Geometrical continuity at inter-element boundaries

Let us formulate the condition for equality of displacement at a particle on an inter-
element line of the reference surface &*. In Fig. 5, adjacent elements A and B contain the
surfaces S, and S;. We imagine that the surfaces are rigidly transported to S and S and
then deformed to the contiguous surfaces $% and S§. We require that the displacement at
O on S, be equal to the displacement at O of Sj.

HEN)

FiG. 5

The rigid motion which carries S, to 8% and Sg to Sy is not relevant, only the difference
in the two rigid motions. The difference is characterized by a small displacement and a
small rotation. If P* and Q* are the base points of S% and S§, respectively, then the rigid

motions differ by the amount of the small displacement W(Q ) and rotation @(Q ,).
The condition for continuity at O* is

. - . ., —
W(0 4) —W(0p) —W(Q ) — Q) x Q40 = (123)
Assuming small strains and sufficiently small elements, we set

00 = 0a(Q), QL0 = 0'¢(Q.) (124a,b)
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To express the condition (123) in terms of the components, we must note that the base
vectors of $% and $% differ by the amount of a small rigid-body rotation @(Q ,). Thus, the
displacement at particle O of element B is

WO0p) = wi(0)¢{0p) (125a)
= w(Op)[E{0.)+@(Q,) x {0 ,4)] (125b)

By means of {124b) and {125b), the terms of equation {123) can be referred to the base triads
2{Q,) and (0 ) of element A. Then the various terms are evaluated at different points and
also referred to the base triads of different points. To treat the components we refer all
vectors to a common base system ; this requires ‘shifting’ some components as described
in the Appendix of Part L. If W(Q) is a vector evaluated at point @, its components referred
to the base triad ¢{0), or £{0), are

w(Q = 0) = [¢(Q).E(0)]w(Q)
wi(Q — 0) = [¢4Q) . ¢(0)]w/Q)
The bracketed factors are the so-called ‘shifters’:
[¢4Q).¢(0)] = C(QO0) = Ci{0Q) (126a,b)
In accordance with (29), we note that
w = %Sijkwkb Wy = (Dkﬁhij (127a, b)
With the notations of (124), (126) and (127) and with the aid of (125), the scalar product
of (123)and 7,{(0 ) is
Wil Q.0)—wi(Op) — CI{QOW Q)
—3[C(0Q)Q* + WO [CT0Q)w,{ D 4)eP™(Q)e;u(0)] = O
It is important to note that the continuity requirement does not involve a measure of any
finite rotation, but it does contain the nonlinear terms underlined in (125b) and (128).
These terms are quadratic in the relative displacements.

The condition for contiguity of edges requires equality of the rotations of coincident
normals at certain points of the edge. Let point O of Fig. 5 be a location at which we require
coincidence of the normals to S% and S%. Again, only the relatiye rotations are relevant.
The rotation of the normal to S% at O* relative to that at P* is ¢{0,). The rotation of the

normal to S} at O* relative to that at Q* is (5(03). But, the rotation of the normal at Q*
relative to P* is &(Q ,). Coincidence of the normals to S% and S% at O* requires that

HO ) —@B(Q,)—P(0p) = O (129a)

(128)

or

640 4)— $x(05) ~ 3C;o(Q0)w,(Q 4)"7(Q)
—3¢'(08)[C/(0Q)0n(Q )e”™(Q)e:a(0)] = O

The conditions (128) and (129) must be enforced at prescribed points of the inter-element
boundaries. For ¢xample, at an interior element deformed according to (110) and (111),
equations (128) and (129) are imposed at each corner, thus providing 20 conditions, the
number of degrees-of-freedom.

(129b)
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The conditions (128) and (129) are the compatibility equations of the discrete system.
They play a role analogous to the compatibility equations of continuous shells. Specifically,
{128) is analogous to the Gauss equation [8] of the deformed surface. Whereas the com-
patibility equation of the continuous shell [15] contains products of the changes-of-curva-
ture and strains, equation (128} contains products of relative rotations and relative dis-
placements. Neither involves a measure of finite rotation.

We note that matching the approximations for w; along inter-element boundaries does
not insure precise continuity because the components of adjacent elements are referred to
different bases; the bases are slightly rotated e.g. 240 ) vs. é{0p). Although the surface is
connected at discrete points by (128), it may be discontinuous at intermediate points, but
only by the amount of higher-order terms like those underlined in (128). When the dimen-
sions of the element are diminished the error diminishes as the product of relative rotations
and displacements. In any event, matching components at the inter-element boundaries
achieves continuity in the context of the linear theory which merely requires small relative
rotations.

The compatibility conditions for point O, (128) and {129), can be expressed in terms of
the ‘2n" generalized deformation coordinates gy of elements A and B by means of (24), (26)
and the approximations for ¢, and w;.

Reactive conditions at inter-element boundaries

The ‘n-+6" generalized forces fy are expressed in terms of ‘n+ 6 resultants /% and m%
which act upon designated particles and normals at prescribed points of the elemental
edges. Particles and normals so-designated shall be called edge-points and edge normals.
They may be common to two, three or four contiguous elements. If they do not lie on an
edge of the shell, we shall call them inter-points and inter-normals. If they lie on the edge of
the shell, we shall call them boundary-points and boundary normals.

At an inter-point of the shell the sum of the forces exerted by all contiguous elements
must vanish and at an inter-normal the sum of the couples must vanish in accordance with
Newton'’s third law.

The components [, of the reactive forces exerted upon the inter-point N are expressed
in terms of the generalized edge forces by (118a, b). However, the reactive force upon each
element is referred to the base triad # of that element. Accordingly, the reactive forces upon
an inter-point must be referred to a common base. The choice of the reference basis is a
matter of convenience. For example, suppose that O of Fig. 5 is an inter-point. The force
upon the element A is referred to the triad €(0,) in accordance with our small-rotation
view toward the behavior of element A. The forces upon element B at O are referred to the
triad ¢{0p) which differs from ¢(0,) by the small relative rotation &(Q ). Then the sum of
the reactive forces imposed by the two elements (4 and B) is

S0.,8{0 .0+ f0,[E{00)+@(Q,) x E{0 4)] (130a)

Again, the components of the vector @(Q,) can be shifted to the base at O,. Then, the
components of (130a) are

S04+ 05+ 5 f0mCip(0Q)0,lQ )P (Q)e™(0) (130b)

If point O is an inter-point and a corner, then it is likely to be common to 4 elements as
depicted in Fig. 6. Here points P, Q, R and O are the base points of elements 4, B, D and C,
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respectively. The reactive condition at the inter-point ‘0" takes the form:

foutfos+foct o,
+ 3 S0k C 00,0 )eP™(Q)
+ fo ok jp@mil0 4)e7™(0)
+£0,Ci(ORI(R e (R)]e™H(0) = 0 (131a)

If point ‘O’ lies on an inter-normal, then we must impose a reactive condition on the
couples which act upon the contiguous corners. The condition is similar to (131a) but /' is
replaced by m*:

mo,+...=0 (131b)

Again, we can observe the analogy between the algebraic equations of our discrete
system and the equations of the continuous system. Equations (131a) contain products of
the forces and relative rotations whereas the equations of motion for a shell contain products
of the forces and the changes-of-curvature (x,zn*%, %3¢®). The relative rotation plays the role
of the curvature-change. Likewise, the equations of motion for a continuous shell contain
products of couples and changes-of-curvature (x,;m*) analogous to the product terms of
(131b).

The equations of motion (122), the compatibility conditions {128) and (129), and the
reactive conditions (131) describe the motion and connection of interior elements. Only
the conditions at boundary-points and boundary-normals are needed to complete the
system.

Boundary conditions and boundary elements

The reference surface of a shell is depicted in Fig. 6. Segments ¢, and ¥, of the boundary
lie on coordinate lines; segment ¥ is an arbitrary smoeth curve.

Corner ‘0’ is a typical inter-point. If we employ the approximation (112), then the
intermediate points ‘E’ and ‘F” are also inter-points at which we enforce the continuity of
transverse displacement.

Point ‘R’ is typical of the boundary-points which lie on a coordinate curve at the
corners of two elements. Continuity of displacement and continuity of rotation of the
normal must be enforced by means of (128) and (129), just as it is enforced at an inter-point.
In addition, the displacement and rotation may be prescribed. The equations which
prescribe displacements and rotations are geometric constraints. Collectively, these
constraints comprise the kinematic boundary conditions.
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If a Kirchhoff-type constraint is imposed upon the shear deformations (as described
previously), then rotation of the normal is not independent of the deflection of the reference
surface; rotations in the edge (¢, at point R) cannot be assigned.

If a geometric constraint is not present at a boundary-point, the corresponding edge
force must be prescribed. For example, if there is no constraint on the displacement, then

Sra¥Sry =0 (132a)

The equations which prescribe forces and couples constitute the dynamic boundary
conditions.

A condition which relates displacements and forces (or rotations and couples) may
replace a kinematic or dynamic condition. For example, if the boundary point ‘R’ is
attached to a linearly elastic support, then we have

Frat oy = —kVe (132b)

Along the smooth curve € it is always possible to choose spacings such that the corners
of elements at the boundary fall upon the curve. This creates a succession of triangular
elements like *S.". The approximation of relative displacements and rotations in the
triangular element can be simpler than the approximation in the quadrilateral element, as
the former need only maintain continuity along two edges. Indeed, the approximation
must be simpler since the number of edge-points and edge-normals is reduced. For example,
if the approximations (110a, b) are employed for the quadrilateral elements Sz and Sp,, then
the corresponding approximations for the triangular boundary-element ‘S¢” are

w, = Bx* By = By {133a)
wy = (133b)

The terms suppressed are those which would be needed to match the displacement at the
missing corner ‘L’ and hence, along the edges KL and LM. The simplification of (112) for
the triangular boundary-element "S." is

wy = 3D3,(x")? +3D4,(x?)? {1349)

The suppressed terms are those which would serve to match the displacement at the
missing points G, L and H.

On the presence of finite rotation

We observed previously that the equations of motion (122) need not involve finite
rotations or displacements. They are absent when the motion is referred to the current state
rather than the initial state, i.e. to the triad ¢; rather than 4;. We noted too that the compa-
tibility equations (128) and (129), and the reactive conditions (131) involve only relative
rotations. However, loads or boundary conditions may depend on fixed directions rather
than the orientation of the element. For example, a gravitational load rather than a fluid
pressure, or a fixed edge rather than a free edge. In such cases, it is necessary to introduce the
rotation tensor and to call upon the relation (64). Again, this is necessary only if rotations
are finite; otherwise there is no need to decompose the rotation into global and relative
parts.
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Hlustrative example 1

The simple approximations {110} and (111) and the Kirchhoff-type constraint can be
illustrated with a beam. For this purpose, it suffices to consider the linear problem of small
deflections caused by a transverse load.

In the one-dimensional version of (110), the relative displacement w; vanishes i.e. the
middle line of an element undergoes a rigid motion. It follows that the relative rotation &
vanishes also. The rotation ¢ of the normal relative to the convected triad ¢; 1s then the
rotation — 2§ caused by shear in accordance with (57), (59), and (60).

Since the indices are not needed in the one-dimensional case, they can be replaced by a
suffix "N’ to indicate the element in question. In accordance with (110) and (111), the trans-
verse displacement Vy, shear strain yy and rotation iy of the normal within the Nth element
are given by the approximations

Valx) = Vy+ayx {135)
Xy = yu+Byx (136)
Yn(x) = ay—2yy + Bax) (137)

here x is the local coordinate originating at the left end of the Nth element and ! is the
length of the element.

The cross-sections at the right end of the Nth element and the left of the (N + 1)th
element are contiguous only if

‘/’N(l) = '//N+ 1(0)
It follows from {137) that
Uni1— 0y = Ayns1— 78— 206y (138)
Likewise, from (135) we have the condition for continuity of displacement:

Vver— Vo = lay (139)

The constitutive equations for a linearly elastic element with rectangular cross-section
follow:

3

By = MEbh3(1 +a)(MN+1+MN) (140)
1

Iy = m{(l—Za)MNH—(I +4a0)My] (141)

wherein, E and G denote the extensional and shear moduli, h the depth, b the width, I the
length of each element, My the couple at the left end of the Nth element and

« = GI*/Eh? (142)

The left side of (140) is the difference between the rotations at the end-sections of the Nth
element; the constitutive equation (141) is the counterpart of the moment-curvature
relation of the Bernoulli-Euler theory of beams. The constitutive equation (141) determines
the transverse-shear deformation.
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Now, consider a cantilever beam fixed at the left end and subjected to a load P at the
right end. At the left end

Vi0)y =0, Y0 =0,—-2y, =0 {143a,b)

If ‘M’ denotes the number of elements of length */’, then
My= ~(M-N+1)Pl (144)
In accordance with (144), equations (140) and (141) yield the resuits:
6lP
= — M— L
B Ebh3(1+oz)( N+3) (145)
P 6o .
From {138), (145) and (146) we obtain
121P

a~+x*“N=m(M*N) (147)
The end shear y, is given by (146) and then the end rotation a, by (143b); the rotations
an(N = 2,..., M)are determined by (147) and then the displacements V,(N = 2,... M +1)
are given by (139) together with {143a) The numerical values of Table 1 are the dimension-
less deflection at the end of the cantilever beam:

Eb(h\?
V= Zﬁ(z) Py
As the Kirchhoff-type constraint, we take
yN(%) =0 (148a)
According to (136), this implies that
Zyy = —1lfy (148b)

We note that (148) results if vy is chosen to minimize the energy due to transverse shear.
With (148b) the strain-energy takes the form

Elbh
Uy = —-n-él-u Y (149)

The resulting constitutive equation is again (140). Equations (145) and (147) apply as
before. The only difference in the Kirchhoff-type theory is the absence of the constitutive
equations (141) or (146) in favor of the constraint (148). In the computations, this difference
manifests itself only in the end-condition (143b) wherein y, is now determined by (148b)
instead of (146). This circumstance is analogous to the continuum solution: The differential
equations of the shear-deformation and Kirchhoff theories are the same. The solutions
differ because of the small rotation of the middle line in the amount of the uniform shear.

In the constitutive equations {140}, (141), (145}, (146), and (147) the factor « tends to
zero as (I/h)*. Unless I/h < 1, the factor has a marked influence on the numerical results.
This is evident in columns ‘a’ and ‘b’ of Table 1; reasonable results are indicated for values
I/h < }. There is a good reason: The factor o stems from the energy of shear deformation.



TABLE 1. END DEFLECTION OF CANTILEVER BEAM UNDER END LOADING

Finite element theories

Continuum theories

a. b. c. d. e.
Shear-deformation Kirchhoft-type Complete Kirchhoff-type Shear-deformation Kirchhoff
L/h
6 12 24 6 12 24 All values 6 12 24 All values
L/
2 -— - — — - — 093750 — — - 1
4 o e — — — — 0-98437 — e 1
6 0741 0402 0143 0722 0397 0142 099306 1019 1005 1001 I
12 0931 0731 0400 0912 0726 0399 099826 1019 1005  1-00t 1
24 0995 0919 0732 0977 0914 0731 099957 1019 1005 1001 1
48 1013 0982 0915 0994 0977 0914 0-99989 1-019 1005 1001 1
96 — 1000 0978 — 0995 0977 099997 1-019 1005  1-001 1
192 — — 0995 — — 0994 0-99999 1019 1-005 1-001 1

S{OYS SJQIXI JO SUIRIS [{BLUS PUE SUONEIOL 2JIUY ‘SIUSWI]D SHUL]

il
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Under the crude approximation (135), which prescribes only rigid rotation of the middle
line, considerable shearing must occur. There appears no rational way to suppress the
factor # in a shear-deformation theory. However, it is entirely consistent in a Kirchhoff-
type theory to neglect the strain-energy caused by shear-deformations. We shall call the
result a complete Kirchhoff-type theory. Column ‘¢’ of Table 1 shows the excellent results
obtained with the latter theory.

Hlustrative example 11

A key feature of the foregoing theory is the decomposition which enables us to adapt
the linear analysis of the finite element to the analysis of geometrically nonlinear problems
of flexible bodies. This feature is displayed in a study of the buckling and post-buckiing
behavior of the column depicted in Fig. 7. Since the linear analysis of the element requires

Fic. 7

no approximation, the results indicate only the validity and effectiveness of the decomposi-
tion as a tool for handling the geometrical nonlinearities.

For the global coordinates of the Nth element we take the components Vy and Uy of
the displacement vector:

-

Vy = Vs + Upts (150a)

i

Xy + Yads {150b)

and the angle y shown in Fig. 7.

If we employ the Bernoulli-Euler theory of beams, then there is no need for any ap-
proximation of the deformation. The deformation of the element is determined by the
relative displacement and rotation of its ends; that is, AV, AUy and Ay of Fig. 7 serve as
the deformation coordinates.

We express the actual force and couple upon the left end of the Nth element as

Fy = Nyt,+0n, (151a,b)
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It is convenient to employ dimensionless quantities instead of actual displacements,
forces and couples:

Oy = %, Auy = é-%f-‘f, Avy = é:fﬁ {152a,b,¢)
xNE%, yNE{ﬂ, M E—Il: (1524, ¢, 1)
ny = g—%» gn = -g}“Qm my = };}MN (153a,b,¢)
P= %?, k= fl-li, (154), (155)

where E, 4 and I are the usual notations for the elastic modulus, cross-sectional area and
moment-of-interia, respectively.

Since the linear analysis of the element is elementary, we cite the results : The constitutive
equations are

Auy = §qy—3my (156a)
Avy = —ny (156b)
AYy = gy—my (156¢)

Because we are concerned with finite rotations, we retain the product terms in the
reactive conditions (131). Then the equilibrium conditions assume the forms:

In+1—qnthny Ay =0 (157a)

k(nys1—ny)—gn. Ay =0 (157b)

My, —my—qy =0 (157¢c)

The conditions of continuity at the intersection of the Nth and (N + Dth element are
By +MAvy = By (158a)

Yn+AYN = Ynyy (158b)

The boundary conditions at the left end of the beam are
my = 0, kn, = pcosyy {159a)
g, = —psiny, (159b)
The conditions at the right end of the beam are
Bys1 =0, Ypyay =0 (160a, b)
Equations (156) through (160} govern the behavior of the discrete system. The description

of the individual element is exact in the context of linear beam theory and the description
of the entire beam is valid under finite deflections.
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TABLE 2
Number of Elements 2 3 4 8 it 22
fadi 1-621 1-268 1149 1-035 1-019 1-005

The equations which determine the buckling load are obtained in the classical manner:
Let n} = p*/k denote the prebuckling value of ny, dmy the buckling increment of m,,
eliminate gy from {157a, ¢} and (156¢) and linearize in dmy. The result is

My 4y —20my, ( +0my—3P*(0my ., +Imy) = 0 (161)
According to (157c) and (156¢)
OAYy) = omy | —20my
Then, from (158b) we have

M
Wingey = 0¥y + NZ (Omy 4 | —20my)
=1

In view of the fixed-end condition (160b)

M
oy = Z (20my—dmy ) (162)
N=1
Using (157¢) and (162), we obtain two boundary conditions from (159a, b) namely
omy =0 (163a)
M
Smy+p* Y (20my—3dmy, ) =0 {163b)
N=1

The difference equation (161) with N =1,...,M—1 and the end conditions (163a,b)
provide a system of (M + 1) homogeneous equations in (M + 1) quantities dmy. The deter-
minant of the coefficients depends only on p* and vanishes at the critical value p%. Table 2
displays values of the ratio p}/pg where p; is the critical value according to the Euler theory.

Totreat Ehe postbuckled deformations, we require the relations between the components
of ¥y and Avy. In accordance with (158) and the definitions {150) and (152)

M
xy= —M Y (Avpcosy,—Augsiny,) (164a)
L=N
M
yv= =M Y [(1+Av)siny, +Au, cos ;] (164b)
L=N
M
Yy = — Z Ay, (164¢)
L=N

The postbuckling deformation can be treated as follows: For any assigned load p > p¥,
one assumes a value yr, whereupon the quantities m,, n,, and g, are determined by the end
conditions (159) and then Au,, Av,, and Ay, by the constitutive equations (156). Then
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m,, n, and g, are obtained by the simultaneous solution of (157). Next Au,, Av, and Ay,
are obtained from the constitutive equations (156), m,, n,, and ¢; from (157), etc., etc,,
until Auy, Avys and Ay, have been computed. The initial guess ¢, is correct only if /4,44
= (. If the condition is not satisfied with sufficient precision, then the initial guess is
revised and the computation repeated. When satisfactory precision is achieved the dis-
placement and rotation at any station can be computed via (164) Numerical computations
of v, obtained with 4 and 11 elements are shown in Fig. 8 The agreement with Euler’s
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theory of the “‘elastica” [16] is amazingly good. Table 3 presents typical values for the dis-
placement components (x,, y,) at the end. As in our reference [16), shortening Avy is
neglected in the latter computation.

TABLE 3. END DISPLACEMENT

¥, = 459° — Xy -V
8 Elements 0-837 0-486
Euler theory [16] 0-845 0477

Hlustrative example 111

The merits of the simple approximations (110) and (111) for membranes are not likely
to be disputed. Such approximations have proved adequate even for finite deformations
[17). The measure of these simple approximations together with the discrete Kirchhoff-
type constraints is the ability to describe flexure. The bending of a plate provides another
demonstration of this capability:

Numerical results were obtained for a square rectangular plate under uniform load (g)
and central load (p), with simply supported (s} and clamped (c) edges. All computations
were based on the same ratio (h/a = 0-100) of thickness (h) to width (a). Non-dimensional
values of the central deflection are given in Table 4. The number of elements is the number
in a quadrant. Also shown in Table 4 are displacements computed by the Hermite inter-
polation [6] which provides 16 degrees-of-freedom for each element. The accuracy displayed
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by our simple approximation is surprisingly good since each element has only 8 degrees-of-
freedom, yet maintains continuity at the interfaces of quadrilateral elements.

TABLE 4. RESULTS FOR SQUARE PLATES

Central deflection w/w,

Number of
elements in Bilinear polynomial with Hermite interpolation
each discrete constraints 6 degree polynomial
quadrant
c—q c—p s—¢ s—p c—q c—p s—q s—p
1 e : 07854 0-5496 1-002 0-9463 0-6221 0-8692
4 09613 0-8652 0-9775 09919 1-004 0-9794 0-8633 0-9472
9 09838 0-9378 09912 09925 1-000 0-9900 0-9246 09653
16 09926 0-9650 09954 09946 1-004 0-9964 — —
25 0-9968 09777 09971 0-9959 — - - —

s—simple supported, ¢-—clamped, g—uniformly loaded, p—centrally loaded
wq denotes value of Kirchhoff theory

On applications of the theory

The motion of a thin elastic shell can be approximated by a discrete system of finite
elements. The unknowns of the system are the generalized coordinates and the correspond-
ing generalized forces. Six coordinates for each element can be identified as the global
coordinates which define the gross motion ; the remaining coordinates are the deformation
coordinates which determine the strain field in accordance with a prior approximation.
The Lagrange equations (122) for an element can be identified with gross motion (or
equilibrium) or relative motion (constitutive equations). The compatibility requirements
(128, 129) enforce continuity of the reference surface and contiguity of inter-element edges.
The reactive conditions (131) fulfill Newton’s law of action and reaction at inter-element
boundaries. Kinematic or dynamic conditions at discrete points of the boundary complete
the system. The analogy between the algebraic equations of the discrete system and the
differential equations of a continuous shell is complete. The discrete system approaches the
continuum as the size of the elements diminishes.

Our formulation of the discrete system is applicable to any shell provided that the
physical components of strain are everywhere small compared to unity; the rotations and
deflections may be arbitrarily large.

The equations of the discrete system are comparable to difference-approximations of
the differential equations for the continuous shell. Indeed, as seen in our illustrative
examples, suitable approximations lead to familiar difference-equations.

In some instances the finite-element approach appears to have an advantage because it
admits geometrical insight based on the experience and intuition of the user. Moreover,
by decomposing the motion into a rigid rotation and a small deformation, one can construct
approximations for large deflections of shells based on the small relative deflections
within small finite-elements; in some cases the approximation within the element may be
exact in the context of linear elasticity. For example, if a thin rectangular sheet is turned
into a cylinder, some portions undergo extreme rotations, although a narrow axial strip
experiences small relative rotations. Other examples are the flexing of an annular segment
to a cone and the axisymmetric deformation of a shallow cone [18].
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AGcTpakT—IlepacTaBaseTcs KOHLEMUMSA KOHEYHbIX 3JIEMEHTOB A/A aHanu3a o000N0YeK, C HECKOJIbKO
BaXHBIMH YCIIEXaMHU.

Bonepsrix, ycoBeplieHcTBOBaeTcs Teopus Kupxrodda, nyrem BkIO4HUS NofiepeyeHoi aedopMauuu
CIABUTA. YCOBEPIUEHCTBOBAHHAS TEOPMst NONYCKaeT Gosiee MPOCThIE ANMPOKCUMUPYoLME (GYHKUWU TIpU
COXPAHEHUU HEIIPEPBLIBROCTU IJIEMEHTOB CEUCHHS.

Bo-BTOpEIX, pa3naraercs ABMXKEHHE 3JIEMEHTA HA JABMXKEHUE KECTKOTO TeNa, BbI3BaHHOE aedopMaLnmed.
DTO pa3I0oKEHHE C/YXKHT B LIEBIO UCNIOAb30BAHUS CYLWECTBYIOMNX GOPMYN Uil YAPYTHX IEMEHTOB A4S
avanu3a 3a7a4, B KOTOPBIX YYMTBIBAIOTCH KOHEYHbIC BPALIeHUs U BbIy4uBaHUE.

3aTeM, IPUBOJATCS ypaBHEeHUs JlarpaHxka NI BbIBOAA YPABHEHHH QUCKPETHBbIX cucTeM. B pelyibraTte
OPUMEHHS ITOTO METOAA MMOJIyHAlOTCH ITOCTOAHHbBIE HHHEPLMOHHbIE YJEHbl A/ JIOO0ro poaa ABHUXEHUA,
KoJIeDaTeNIbHOTO UM HECTALIMOHAPHOTO.

B 3akioueHue, NPUBOAATCA CaMble MNMPOCTbIE AMMPOKCHMUPYIOLIME NMOMMHOMBI, NMPH YY€TE TEOPHH
nedbopmauuu cabra. [lanbHeilllide ynpoLweHHUs MONYy4YaloTCA MYyTEM BBEOEHHWS CHJI CLEIUIEHUs] aHOJIOTHYHO
runortese Kupxrogda teopun crnowrHoit cpeavl. Cuibl CLUENMIECHUA ABIASIOTCA NMpaBWIbHOWH 0a3zoit ans
OTCYCTBHS BIIMSIHUS TOMNEPEYHOro CABUra B 3Hepruu nepopmaunu. PesynbTupytowee npubianxenue ans
YKa3aHHBIX NIPYMEDPOB ABJIETCH OBICTPO CXOAWMBIM K pelyibTatam reopun Kupxrodda.



